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The formation and growth of three-dimensional wave packets in a laminar 
boundary layer is treated as a linear problem. The asymptotic form of the dis- 
turbed region developing from a point source is obtained in terms of parameters 
describing two-dimensional instabilities of the flow. It is shown that a wave 
caustic forms and limits the lateral spread of growing disturbances whenever the 
Reynolds number is J2 times the critical value. The analysis is applied to the 
boundary layer on a flat plate and shapes of the wave-envelope are calculated for 
various Reynolds numbers. These show that all growing disturbances are con- 
tained within a wedge-shaped region of approximately 10" semi-angle. 

1. Introduction 
The linear theory of hydrodynamic stability examines the possible perturba- 

tions to a given mean flow and determines the various eigenvalues defining these 
disturbances. In  boundary layers the eigenmodes take the form of travelling 
waves. Disturbances may be generated by perturbing one or more of the bound- 
ary conditions. A flat ribbon oscillating vertically close to the surface is one ex- 
ample where the resulting downstream motion is a single two-dimensional wave. 
Such a disturbance was used by Schubauer & Skramstad (1947) to excite the 
boundary layer on a flat plate so that the theoretical predictions of Schlichting 
(1933, 1935) could be verified. Other boundary perturbations generate more 
complicated flows which are composed of linear combinations of simple waves. In  
this paper the boundary perturbation has the form of a pulsed point source and 
the resulting disturbance is a three-dimensional wave packet. Apart from any 
intrinsic interest in the behaviour of such a wave packet, the solution may be 
more applicable to natural transition than the single wave model generated by 
a vibrating ribbon. Natural excitation can probably be better simulated by a 
series of pulse perturbations distributed randomly in space and time. Far down- 
stream the patches of waves coalesce and form the observed type of irregular 
oscillation. 

The asymptotic form of the wave packet developing from a point source 
has been studied by Benjamin (1961) and by Criminale & Kovasznay (1962). 
In  both cases approximations were made to simplify the integration, and details 
of the wave envelope shape were lost. In this paper, which also uses asymptotic 
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expansions, different approximations will be made so that a more complete solu- 
tion of the problem is obtained. The analysis applies specifically to those bound- 
ary-layer flows which admit waves having small rates of amplification. 

Although the problem to be treated is three-dimensional it is convenient to 
discuss first the simpler two-dimensional case. The same technique will then be 
applied to the general three-dimensional problem, making use of two-dimensional 
data through Squire’s (1933) transformation. The resulting relationships are 
applied to the boundary layer on a flat plate and the shape and growth of the 
wave packet is obtained for a range of Reynolds numbers. 

2. Formulation 
The mean flow is treated as being parallel and the equations governing the 

perturbation are linearized. These homogeneous equations reduce to the Orr- 
Sommerfeld equation in the transform plane. The usual homogeneous boundary 
conditions yield the familiar eigenvalue problem of stability theory, forced 
motions being generated by inhomogeneities in one of the boundary values. The 
analysis presented here follows that used in the solution of the vibrating Schu- 
bauer ribbon (Gaster 1965)) with similar assumptions and approximations. The 
present problem differs from that previously discussed in the choice of boundary 
conditions. However, it  is convenient to use the results already obtained to de- 
rive the solution to the present problem. This removes the need to repeat all 
the arguments concerned with paths of integration and convergence of the trans- 
form integrals etc. 

The ribbon, vibrating at frequency o, was represented by the following bound- 
ary conditions on the perturbation streamfunction: at  the wall 

= 0, u = a$lay = 0, v = - a$lax = q x )  coswtH(t) 

(where H(t) is the Heaviside operator); far from the wall at  y1 the perturbation 
decays, i.e. as y1 -+ 00 

a$/ay -+ 0 and a$/az -+ 0. 

The asymptotic solution for the usual case when the group velocity of the ex- 
cited mode is positive was shown to be 

where a{ >is the real part of { }, and @ is the transform of the perturbation 
streamfunction $(y; x, t). 

The eigenvalue equation for the normal modes of the system is given by 
@ ( O ;  a(w),  o) = 0. The wave-number, 01, takes the appropriate value, which is 
generally complex, for this relation to hold. The travelling wave described by 
(1) is the spatially growing disturbance which is observed downstream of a two- 
dimensional Schubauer ribbon. 

A two-dimensional pulse input may be represented by a boundary perturba- 
tion of the form : 

9 = 0, -- = q x ) q t ) ,  aY ax 
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where S is the unit impulse function. Now the delta function may be written in 
the form of an integral 

S(t )  = - coswtH(t)dw, 
77 ls+m --m 

and we can therefore obtain the asymptotic form of the streamfunction for the 
pulse disturbance as an integral, 

In general it is found convenient to  evaluate integrals of this type in the com- 
plex plane. All the functions can be defined in the complex domain by replacing 
w by the more general complex parameter p. 

3. The asymptotic expansion 
It is required to evaluate an integral of the form : 

I = Simh(d,p)expji(ccx-pt)~dp, -m 

where h(a, p) is a regular function of the complex parameters a and p. If X(a, t )  
is the Fourier transform of A, and P(a, t )  the transform of exp (iax) we may use 
the relation for the transform of a product : 

I = [-“X(a,t-?j)P(a,y)dy. 
J -m 

Both of the terms in the integrand can focus attention on regions of the spectrum 
which give large contributions to the integral. However, for large t the dominant 
contribution arises from the exponential function and, as in the previous studies 
of Benjamin and Criminale & Kovasznay, only the behaviour of this term will 
be considered. The problem thus reduces to finding the asymptotic expansion of 

I N s+Iexp [ i (a: - p) t )  dp for large t. 

x is also a large parameter and x/t is of order unity. 
Asymptotic expansions of integrals of this form can be obtained by applying 

the method of steepest descent. The contour is deformed to pass through the 
saddle-point of the exponent in such a way that the periodic part of the integrand 
is constant and the large exponential term is at  a maximum. The largest values of 
the integrand arise in the region of the saddle-point and the h s t  term of the 
asymptotic series, which is sufficient for the present discussion, can be obtained 
in terms of parameters evaluated at the saddle-point. 

The exponent is stationary at the point denoted by p* where 

dcc t - (P*) - - = 0, 
dP X 



176 M .  Gaster 

or in terms of real and imaginary parts 

and 

These two equations define the complex quantity /3* in terms of tjx. Different 
rays in the (x, t)-plane lead to different values of /3*. 

We may expand the exponent about /3* 

i a -  -/3 = i a(P*), X - / 3 * ] - i ~ ~ . - z - - ~ ~ ( / 3 * ) + . . . .  (p  - /3*)2 x d2a I: 1 I (3) 

As the path is chosen to pass through the saddle-point so that the imaginary 
part of the exponent remains constant we have that 

ispurelyreal. 

The first term of the expansion thus becomes 

exp {;[a(/?*) x - /3*t]} ~ 

d2a(P* 
> (4) 

neglecting a phase factor which depends on the direction of the path of integra- 
tion. Equation (4) represents a travelling wave system which is amplified in 
both space and time. The values of the real and imaginary parts of both wave- 
number and frequency vary slowly in space and time through the position of the 
saddle-point defined by (2). Along rays in the (x, t)-plane, /3* is constant and (4) 
appears as a simple travelling wave with wave-number ar(/3*), frequency /3: and 
amplification 

( 5 )  - [Ei( /3*)  x - p31. 
The amplification rate given by (5) may be written in terms of temporal 

aPr 
growth 

- [%(P*)&(P*)-PTjt, 

or spatial growth - [.,(P*)-PT&y*)]x. 

Regions of amplified waves exist in the physical (x, t)-plane where (5) i s  positive. 
The amplified regionis thus bounded by the rays which make ( 5 )  zero. The leading 
and trailing edges move with the speeds of the group velocities appropriate to the 
waves on the neutral rays, and thus the pulse spreads out linearly with time (or 
space) as it propagates downstream. Except for a qualitative description of the 
behaviour the relations given by ( 2 )  and (4) are not very convenient for calculat- 
ing the actual behaviour of the wave packet. EigenvaIues for temporally grow- 
ing waves are usually the only ones computed and for the present purpose we 
need to know the behaviour o f a  and aa,/a/3, along a different path on the /3-plane. 
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However, if one makes certain approximations it is possible to obtain the neces- 
sary quantities in (2) and (4) solely from a knowledge of the temporally growing 
modes. 

4. Approximation for small amplification rates 
Instability waves in flat plate boundary layers have low amplification rates. 

Calculated values of the temporal amplification rate pi for zero spatial growth 
(a, = 0) are quite small compared with the real parameters a., and /3,. We can also 
expect aa,/apr to be small along the line a, = 0 in the /3-plane. Now aai(i(p*)/@3, 
is zero and since this derivative is already small we can expect the saddle- 
point to lie close to the ai = 0 contour. With the assumption that a is an analytic 
function of p in this region the Cauchy-Riemann relations hold, 

Differentiating we also obtain 

If we integrate the above with respect to Pi from state (1) to state (2) keeping 

Let state (1)  be a known temporally growing mode and state (2) the saddle- 
point, then 

aa, 
a,(l) = 0, -(2) = 0 and pr(l) = constant = pr(2). 

aP, 
It can then be shown by expanding the integrand and integrating (6) (see 

Gaster 1962) that 

Thus [p,(2)-pi(l)] is small and the saddle-point lies close to a temporally 
growing mode provided a2cc,( l)/@: is not small. Using similar techniques we can 
obtain the values of all the saddle-point parameters arising in (4) in terms of 
quantities for temporally growing modes. The Cauchy-Riemann relations can be 
integrated at  constant P., from (1 )  to (2) (see Gaster 1962), giving to order (/3tm): 

The predominant term in the asymptotic series thus reduces to 
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For large t the wave envelope is contained within the rays of zero growth 
associated with the neutral two-dimensional eigenmodes. All temporally grow- 
ing disturbances between these limits can be linked with a region inside the wave 
packet where the waves have equal values of wave-number, frequency and ampli- 
fication rate. 

5. A three-dimensional pulse 
It is a relatively straightforward process to extend the two-dimensional solu- 

tion to three dimensions. It is convenient to change notation at this stage and 
we will define a general three-dimensional wave in the form 

v(y; x, x, t )  = #(y) exp {i(m + bz- wt)}, 

where a and b are the wave-numbers in the x and z directions. In  general a, b and 
o will be complex. 

Consider the boundary perturbation: 

y = 0;  u = 0, w = 0, v = S(x) 6(t)exp (ibx). (9) 

Keeping b constant we can use the result obtained in 3 3, which gives 

I i@(y; a(w, b) ,  b, w )  
-- H(x) exp {i[a(w,  b)x- wt ] }  dw (s -a a@(o; a(w, b) ,  b,  w) /aa  

v N exp (ibx) 9 

The eigenvalues of the three-dimensional wave system are given by 

@ ( O ;  a(w,  b ) ,  b,  w )  = 0;  

note that the wave-number in the x-direction is now a function of b as well as w ,  
Concentrating on the exponential term we can expand as before, 

I N 

-a 

Expanding the exponent about the saddle-point w* on the w-plane we obtain 

exp (ibz) exp{i[a(w*, b)  (xlt) -@*It}, 
[a”o11( 6*, b)  /aw2 x] t 

I -  

where the saddle-point is given by the complex equation 

aa X 
- ( ~ * , b ) -  - 1 = 0. 
aw t 

Since the integration of (9) with respect to b leads to a perturbation of the form 
S(x) 6(z )6 ( t ) ,  we can arrive at  the downstream disturbance by integrating (lo), 

+a exp { i [b(x / t )  +a(@*, b )  (x/t) - w*]  t }  
db. [a2a(o*, b)/aw2x]3 

Expanding the exponent about b* we have 

X z aa X + a(w*, b*) - w*]  t + i[; + ab (w*,  b*) t (b  - b*) 

a2a dw* Pa dw* x(b-b*)’ 
(w*,  b*) + 2 ~ (w*,  b*) ~ + p2 ( W* , b* + .... 

aw 8b db a@ ’(T) J 2! 
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If we choose b* to be the saddle-point we can make the linear term vanish 
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or 

I reduces t o  

z xaa 
t t ab 
-+ - - (w* ,  b*) = 0, 

z aw 
- = - (w*,  b*). 
t ab 

exp {i[b*z + a(@*, b*)x - w*t]}, 

where the derivatives are evaluated at (w* ,  b*). 
Now b*, w* and a(@*, b*) are complex quantities, but if we again assume that 

the imaginary parts are small compared with the real it is possible to evaluate all 
the terms in (1 1) for temporally growing modes which have a and b real, and w 
complex. Such an expansion is only valid when a term equal to the denominator 
of (1 1)  is not small. Treating w as a complex function of the two real variables a 
and b we get the form: 

exp (i[a*x+ b*z - @(a*, b*) t ] } ,  vw--- 

where u* and b* are defined by the two equations 

Thus for an xlt and zjt we can obtain wi, the amplification factor. The neutral 
loop, wi = 0, on the (a, b)-plane transforms into the outline of the wave packet 
in the physical plane. On the inside of this boundary all waves are amplified and 
outside they are damped. 

6. Squire’s transformation 
Squire (1933) applied a simple transformation to the perturbation equations 

of motion for a three-dimensional travelling wave and showed that the wave 
exp (i[ax + bx - uct]) a t  Reynolds number R, was equivalent to the two-dimen- 
sional wave exp {i[ax - a c t ] }  at a lower Reynolds number R when 

RIR, = a/% and a2 = a2 + bz; (14) 

a, a and b are taken to be real, while the wave speed, c, which is the same for both 
waves, is complex. The solution of the two-dimensional stability problem for 
temporally growing waves can be presented in the form c = Fl(a, R,). This may 
be transformed by (14) into c = F2(a, b) for any Reynolds number R lower than 
R,. Putting r = R/R, we get 

12-2 
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The real wave-numbers a and b are functions of a and r so we can write 

and 

But 

so that 

and 

Now w = ac ; hence w, = arc, and wi = arci, and we have 

and - = ar-. 

-=Cr+ar- aa 

ab ab 

The relations given in (13), (16) and (17) provide the necessary link between 
the two-dimensional stability diagram and the wave envelope in the physical 
plane. Each point on the stability diagram contributes to the disturbance at  some 
point on the ( x / t ,  @)-plane. Regions inside the neutral loop contribute to areas of 
the wave envelope which have disturbances that increase with time, and neutral 
two-dimensional modes are linked with the boundary of the amplified region 
in the physical plane. Defining the outline of the wave envelope by this neutral 
amplification boundary enables the shape to be obtained simply in terms of the 
quantities c,, acJaa and ac#r evaluated on the neutral loop. 

7. Numerical results 
The familiar kwo-dimensional stability diagram for temporally growing waves 

in a Blasius flat plate boundary-layer profile is shown on figure 1. The numerical 
data for this plot was obtained by Dr M. R. Osborne at Edinburgh University. 
He also calculated the derivatives &,/act and ac,laR, and these are plotted in 
figure 2 in a form which is convenient for the calculation of the wave packet shape. 
These curves have been used together with equations (131, (16) and (17) to find 
the wave-envelope boundary for a range of Reynolds numbers. 

8. Discussion 
At low Reynolds numbers the wave packet is crescent shaped. All amplified 

regions inside the neutral stability loop map onto the interior of this boundary. 
However, above some critical value of Reynolds number we find that different 
areas inside the neutral loop map onto the same region of the physical plane so 
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that the neutra1 contour, which in fact crosses itself', cannot fully define the wave 
packet. This is the familiar wave caustic (see Lighthill 1965). The caustic arises 
when the transformation is singular and strips of width d on the stability diagram 
map onto regions of width d2 on the physical plane. The waves pile up along a 
front and cause the motion to have a large disturbance amplitude there. The 
caustic occurs where the denominator of (1 1) is zero. In the region of the caustic, 
where the expansions used to derive (12) are invalid, the solution can be obtained 

Boundary-layer Reynolds number 
(based on the displacement thickness), R,*, 

FIGURE 1. Amplifkation curves for two-dimensional waves in a zero pressure gradient 
boundary layer. 
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Boundary-layer Reynolds number, R,* 

FIGURE 2. The behaviour of R(ac,/aR) and a(ac,/aa) -R(ac,/aR) on the neutral curve. 
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in the form of Airy functions from higher-order expansions. These solutions are 
periodic on one side of the caustic, reach a maximum amplitude on the caustic 
and decay exponentially away on the other side. On the caustic the disturbance, 
which has a larger amplitude than that given by (12), decays algebraically as 
tf and increases exponentially at  a rate determined by the region on the sta- 
bility diagram which generates the caustic. 

In  the particular case of a Blasius flat plate profile we note that the value of 
[a(ac/aa) - r (acjar) ]  does not vary a great deal around the neutral curve (see 
figure 2).  The singularity in the transformation to the physical plane is therefore 
controlled by the term r(1- ?)*. This has a maximum at r = 1/42  which leads to 
maximum values of 

z ~ of "2-4. 
t 2 aa 

For Reynolds numbers above about 750 (based on the displacement thickness) 
1' is greater than 1/42 and certain amplified modes will create a caustic along some 
path indicated in figure 3. Outside this caustic there are no periodic disturbances 
at  all, not even damped ones, and the waves are thus contained within the limit 

0.08 

0-06 

5 0.04 

002 

0 
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I I 
Approximate position of wave caustic 
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